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Energy Efficiency & Ove rVI ew ”5
Renewable Energy VEHICLE EFFICIENGY AND ENERGY SUSTAINABILITY
Work Timeline Barriers
e June 2011 Need elec.tro:thermal-r.nechaplcal modeling,
characterization, and simulation of advanced
e June 2014 technologies to:
e 40% Complete e Improve electrical efficiency

e Improve package thermal performance and
increase reliability

Budget

* Reduce converter cost
e Total project funding

_ 4700K Partners
 Funding received in FY11 e NIST- Electro-thermal modeling

—  $200K e UMD/CALCE — Reliability modeling
e Funding received in FY12 e VTech — Soft switching module

— $ 300K e Delphi—High current density module
* Funding expected in FY13 e Powerex — Module technology

~ 5200K e NREL - Cooling technology
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ENERSY _Goal: Electro-Thermal-Mechanical Simulation

Energy Efficiency &
Renewable Energy

Models, Parameter Determination
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Simulation Applications
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Inverter performance evaluation
Advanced topology design
» Advanced device integration
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 Electro-thermal interactions,
« SOA and failure mechanisms,
» Cooling system impacts.

Reliability

* Reliable integration of
advanced technologies

» System reliability
evaluation.

* In-Vehicle applications:
— Maintaining component health,
— Predicting service needs,
— Operation with partially degraded
capacity near component end-of-life.
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U.S. DEPARTMENT OF -""'..-—._-—--\ ___\\
ENERGY
Relevance Us.
Renewable Energy e M e
Objective:
Provide theoretical foundation, measurement methods, data, and
simulation models necessary to optimize power module electrical,
thermal, and reliability performance for Plug-in Vehicle inverters and

converters.

FY 2013 Goals:

1) Analyze Viper SOA using dynamic electro-thermal simulation with
models including high voltage, high current parameter extraction

2) Develop Cross-Coupling TSP Measurement capability and use to validate
thermal coupling model within VTech Module Thermal Model

3) Develop Thermal Component Models for Air and Liquid Cooled Heatsinks
and include in electro-thermal simulation of Viper and VTech modules

4) Perform thermal cycle measurements to extract parameters for Physics-
of-Failure Models and use in Electro-Thermal-Mechanical Simulation

5) Develop electro-thermal models for advanced semiconductor devices
e.g., SiC MOSFETs and SiC JFETs and GaN diodes.
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DRIVING RESEARCH AND INNOVATION FOR
VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY

Milestones/Decision Points

Month/Yr | Milestone
Aug. 12 1) Used electro-thermal-mechanical simulations to validate measurement during fault
(complete) | conditions and evaluate thermal stresses in Viper module.
July 13 2) Incorporate Failure Models into Electro-Thermal Simulation using results of thermal
(Go,no-Go) | cycling degradation and monitoring measurements on two DBC stacks.
Sept. 12 | 3) Developed thermal-network-component models for representative cooling systems.
(complete)
Oct. 12 4a) Used simulations to evaluate thermal stresses at module interfaces for VTech module,
(on hold) | 4b) and use physics of failure models to calculate damage and evaluate impact on VTech
modaule life.
Jan. 13 4c) Calculate increase in thermal resistance at interfaces in VTech module due to thermal
(on hold) | cycling damage and use changing resistance in the thermal network during simulations.
Mar. 13 5) Included ligquid- and air-cooling thermal network component models in electro-thermal
(complete) | simulations of vehicle inverters.
June. 13 [ 6) Developed electro-thermal models for advanced semiconductor devices including SiC
(ongoing) | MOSFETs, SiC JFETs and GaN diodes.
Aug. 13 7) Include advanced Wide-Bandgap semiconductor device models in simulations to
(ongoing) | optimize high current density, low thermal resistance, and soft-switching modules.
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U.S. DEPARTMENT OF

ENERGY FY13 Tasks to Achieve Goals Usr/

Energy Efficiency & !
Renewable Energy VENIGLE EFFICIENCY AND ENERGY SUSTAWABILITY
2012 2013
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ENERGY Approach: s e
Panowable Enerty Measurement, Modeling, and Simulation e

» Develop dynamic electro-thermal Saber models, parameter extractions,
and validation of models for:
= Silicon IGBTs and PiN Diodes
= Silicon MOSFETs and CoolMOSFETs
= SiC Junction Barrier Schottky (JBS) Diodes
= SiC MOSFETs

» Develop thermal network component models and validate models using
transient thermal imaging (TTI) and high speed temperature sensitive
parameter (TSP) measurement:

= Power Semiconductor Chip
= Package: Delphi VIPER and VTech Soft Switching modules
= Air and liquid cooling heatsinks

» Develop thermal-mechanical degradation models and extract model
parameters using accelerated stress and monitoring:

= Stress types include thermal cycling, thermal shock, power cycling
= Degradation monitoring includes TTI, TSP, X-Ray, C-SAM, etc.

NIST @ calce Fell =1 vr ZAOMIEIREX DELPHI



‘/—-'—_‘"\

ENERGY Application: Delphi Viper Module U5ﬂl_?ll;2
Energy Efficiency & ° °
Renewable Energy Double-Sided Cooling Model T i W
Heating
Elemgnts ‘
.'.—+—
——

.‘¢
-

*Cooling
Coils

A doubled-sided temperature-controlled heatsink that was developed for
the Viper module. This heatsink uses a spring-loaded piston to apply a
controlled four kg compressional pressure to the device.
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ENERGY hod: Electro-Thermal Model f e
Method: Electro-Thermal Model for USDFRIVE

Energy Efficiency & ° ° °

Renewable Energy Double-Sided Cooling Viper Module B sy
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ENERGY Validation: Delphi-Viper ¥707:]] /e

Renowable Energy Electro-thermal Semiconductor Models
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ENERGY s datian: ixture M | | i
S Validation: Thermal Test Fixture Mode USORIVE
Renewable Energy VLR RS e 0 IS O BRI

Viper module thermal test fixture

Piston Top Cooling Plate (not shown)

Viper Module

—  Water Cooling Fixture

Viper module 262 W steady state ANSYS
simulation for double-cooled test fixture

Top Plate Temperature (0.05” from edge)
37 °C (ANSYS model)
40.4 °C (Measurement)

Device Temperature
69 °C (ANSYS model)

Piston Temperatures (0.05” from edge)
28 °C (ANSYS model)
31.7 °C (Measurement)
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Renewable Energy

Validation: Thermal Network Component | -

USs

L
Model for Viper Module Package
VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY

« Test fixture used to validate thermal model of Viper die, package, and
interface to copper plates using TSP measurements.

» Test fixture modeled and compared with ANSYS and TSP.
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Comparison of simulated and measured
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duration, high power pulses.
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Method: Electro-Thermal Simulation Adiabatic
Heating for Short Circuit Conditions

Short Circuit Simulation
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ENERGY Demonstration: Viper Module ys, =
= Effici & ° ° ° ° e, ®
Renwabis Energy Simulation for Short Circuit Conditions g e o oo
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ENERGY Demonstration: Liquid-Cooled Heatsink Us, e
Energy Efficiency & ° ° °
Renewable Energy Viper Module Thermal Simulation
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ENERGY Application: VTech Soft Switching Module  ysm5/1/£

Energy Efficiency &
VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY
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Renewable Energy DRIVING RESEARCH AND INNOVATION FOR

VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY
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ENERGY Validation: VTech Module uUs, e
Energy Efficiency & .
Renewable Eneroy Electro-thermal Semiconductor Models S e s S
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Additional validation results given at FY12 PEEM Kickoff meeting.
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ENERGY Method: Cross-Coupling TSP Measurement Usor) o~
Energy Efficiency &
Renewable Energy For VTech Module Paralleled IGBT/MOSFET  zuscmom,,,.,

CH2
For the method to work, the IGBT has 4700 IGBT 470 O MOS —T I
to dissipate a given power while the CH4 :l:
MOSFET remains off, and their gates i
must be measured independently. 470 O CH1 470 O 3 k’é*-.,
3kQ :
1 CH3
IGBT MOS T oV - 20V
E Sense Gate S Sense ae — —d =
S ¥ L B " TSPiegeT = Vchi — Venz TSPwmos = Vchs — Veha
A} MOS1B
T e The devices were chosen for having
S e s = are . . . .
. .' p—2 | 1GBT Collector physical proximity, different power
| V= MOS&D _ dissipation ratings, and being
: ! rain
- \m . - thermally coupled through the same
mmm . ¥

conductive layer on top of the DBC

Y
IGBT Emitter MOS Source
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Validation: Cross-Coupling TSP Measurement
VTech Module Thermal Coupling Model
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Preliminary electro-thermal coupling
model results for the MOS
measurements show a close
correspondence in their behavior.
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DRIVING RESEARCH AND INNOVATION FOR
VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY

The IGBT was powered with a train of
pulses at different duty cycles to
generate enough average heat to be
sensed in the MOS vicinity.

This IGBT measurements were used to
validate the thermal transient behavior
for the thermal stack model, and the
MOS measurements were used to
validate the thermal coupling model
between adjacent power devices.

01 02 03 04 05 06 07 08 09 10
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ENERGY Analysis: Cross-Coupling TSP Measurements ”5 Ny
Energy Efficiency & . .
engpshis e TSP Calibration for IGBT to MOSFET =
32 - - -
30 Peak Power
__28 —--100 W y =
O
o 26 =80 W
224 = 0.189x + 10.964
5 50 W ’ .
o 22
£
kz 20
on 18 y =0.1817x + 9.3553
@)
s 16
014
<
12 For each peak power test the duty cycle is
/ increased from 0.1% to 99.9%, in 5% steps. NIST
10 g chilled water temperature determines initial point.
8 e E—
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VTech Module Electrical Waveforms
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DRIVING RESEARCH AND INNOVATION FOR
VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY
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ENERGY  Analysis: Inverter Electro-thermal Simulation - uUs =
Energy Efficiency & °
Renewable Energy VTech Module Electrical Waveforms S T L
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U.S. DEPARTMENT OF

ENERGY — Analysis: Paralleled Si IGBT, CoolMOS, Diodes Us.
Energy Efficiency & vy 8 W =
Renewable Energy VEHICLE FFFICIENCY AND ENERGY SUSTAINABILITY
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Analysis of current sharing of paralleled
Switches (Si IGBT and CoolMOS)
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Diode Voltage [V]

Analysis of current sharing of paralleled Diodes
(Si PiN, CoolMOS-body Diode, SiC JBS Diode)
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ENERCY Application: Package Reliability Prediction US|
Energy Efficiency & f -

Renewable Energy VEHICLE EFFICIENGY AND ENERGY SUSTAINABILITY
Physics-of-Failure Models High-speed Transient TSP Reliability Simulations
* Coffin-Manson Used to detect changes in e Thermal
* Norris-Landzberg thermal resistance of buried- N ,,*

* Energy Partitioning interfaces caused by thermal

* Strain-Range Partitioning cycling damage. E}m va_+_
20% “ ThiThz  Thn

e 18%
or
Tc
1 iTc
Ta

=#=15 min dwell time, medium AT
«=5 min dwell time, medium AT
i=16% | ==5 min dwell time, high AT

Variable Ramp-Rate S 1% e

Thermal Cycling E o @
T =
Tonest '1’ @ E ‘ .
Ta 0.1 1 N 1I0 | 10(:, cZil.t)l)() 10000
Thermal Cycles Subjecte
Temp. Swing Time Degradation and Monitoring Mechanical
Design-of-Experiments t
7j’:n/,1 AT1 tdw,1
Ta;,/d
Taz | AT, | w2 > Technology
°
N \ERSNETR) | Dependent
rooar, | o - Reliability
: : Models
Multiple cycling parameters for each » >
DBC stack construction. tow
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U.S. DEPARTMENT OF
DRIVING RESEARCH AND INNOVATION FOR

Energy Efficiency &
Renewal ble Energy

« Validated Delphi Viper simulations for full range of short circuit fault
conditions: collector voltages, gate-drive parameters, and initial
temperatures.

» Electro-thermal-mechanical simulations used to evaluate thermal stresses
in Delphi Viper double-sided cooling power module for nominal and fault
operating conditions.

« Performed a range of thermal cycling and thermal shock degradations to
characterize mechanical reliability of two DBC stack types.

» Used new enhanced TSP measurement system to validate thermal cross-
coupling between die within VA Tech soft switching modules.

 Performed full electro-thermal simulations and validations for VA Tech soft
switching module in propulsion inverter operation at P, .= 50 kW @ 20 kHz.
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U.S. DEPARTMENT OF

Energy Efficiency & F u t u re Wo r k ”5

DRIVING RESEARCH AND INNOVATION FOR
Renewable Energy VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY

Include advanced Wide-Bandgap semiconductor device
models in simulations to optimize high current density, low
thermal resistance, and soft-switching modules.

Develop electro-magnetic package/system interconnect
models.

Perform EMI simulations using electro-magnetic
package/system interconnect models, electro-thermal
semiconductor models and thermal-network-component
models.

Determine grid storage/inverter applications for bi-directional
vehicle chargers and develop circuit simulation scripts for
chargers operating in these conditions.

Perform simulations and evaluate impact of advanced
technology power semiconductors and module packages in
bi-directional vehicle charger storage/inverter applications.
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